An integration that allows LLMs to interact with Raindrop.io bookmarks using the Model Context Protocol (MCP).
9 stars1 watching2 forks
Raindrop.io MCP Server
An integration that allows LLMs to interact with Raindrop.io bookmarks using the Model Context Protocol (MCP).
Features
- Create bookmarks
- Search bookmarks
- Filter by tags
Requirements
- Node.js 16 or higher
- Raindrop.io account and API token
Setup
- Clone the repository:
git clone https://github.com/hiromitsusasaki/raindrop-io-mcp-server
cd raindrop-io-mcp-server
- Install dependencies:
npm install
- Set up environment variables:
- Create a
.env
file and set your Raindrop.io API token
RAINDROP_TOKEN=your_access_token_here
- Build:
npm run build
Using with Claude for Desktop
- Open Claude for Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- Add the following configuration:
{
"mcpServers": {
"raindrop": {
"command": "node",
"args": ["PATH_TO_BUILD/index.js"],
"env": {
"RAINDROP_TOKEN": "your_access_token_here"
}
}
}
}
- Restart Claude for Desktop
Available Tools
create-bookmark
Creates a new bookmark.
Parameters:
url
: URL to bookmark (required)title
: Title for the bookmark (optional)tags
: Array of tags (optional)collection
: Collection ID (optional)
search-bookmarks
Searches through bookmarks.
Parameters:
query
: Search query (required)tags
: Array of tags to filter by (optional)
Development
# Build for development
npm run build
# Start server
npm start
Security Notes
- Always manage API tokens using environment variables
- Set appropriate permissions for Claude for Desktop configuration files
- Restrict unnecessary file access
Open Source
This is an open source MCP server that anyone can use and contribute to. The project is released under the MIT License.
Contributing
Contributions are welcome! Feel free to submit issues, feature requests, or pull requests to help improve this project.
Related Links
Features
create
search
filter
bookmark
tags
Category
Knowledge & Memory